F. Sattler, T. Korjakow, R. Rischke and W. Samek, “FEDAUX: Leveraging Unlabeled Auxiliary Data in Federated Learning” in IEEE Transactions on Neural Networks and Learning Systems, Dec. 2021. 

D. Becking, M. Dreyer, W. Samek, K. Müller and S. Lapuschkin, “ECQxx: Explainability-Driven Quantization for Low-Bit and Sparse DNNs” in Holzinger, A., Goebel, R., Fong, R., Moon, T., Müller, KR., Samek, W. (eds) xxAI – Beyond Explainable AI. xxAI 2020. Lecture Notes in Computer Science(), vol 13200. Springer, Cham., Apr. 2022.

F. Sattler, A. Marban, R. Rischke and W. Samek, “CFD: Communication-Efficient Federated Distillation via Soft-Label Quantization and Delta Coding,” in IEEE Transactions on Network Science and Engineering, May 2022.

S. Ede, S. Baghdadlian, L. Weber, A. Nguyen, D. Zanca, W. Samek and S.  Lapuschkin, “Explain to Not Forget: Defending Against Catastrophic Forgetting with XAI.” in Holzinger, A., Kieseberg, P., Tjoa, A.M., Weippl, E. (eds) Machine Learning and Knowledge Extraction. CD-MAKE 2022. Lecture Notes in Computer Science, vol 13480. Springer, Cham., Aug. 2022.